Bibliography
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21. [DOI]
Armstrong, J. S. (1978). Long-range forecasting: From crystal ball to computer. John Wiley & Sons. [Amazon]
Armstrong, J. S. (Ed.). (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers. [Amazon]
Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166. [DOI]
Athanasopoulos, George, Gamakumara, P., Panagiotelis, A., Hyndman, R. J., & Affan, M. (2020). Hierarchical forecasting. In P. Fuleky (Ed.), Macroeconomic forecasting in the era of big data (pp. 689–719). Springer. [DOI]
Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29(1), 19–31. [DOI]
Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting with temporal hierarchies. European Journal of Operational Research, 262(1), 60–74. [DOI]
Athanasopoulos, G., Poskitt, D. S., & Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econometric Reviews, 31(1), 60–83. [DOI]
Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20(4), 451–468. [DOI]
Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312. [DOI]
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. [DOI]
Bickel, P. J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76(374), 296–311. [DOI]
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 26(2), 211–252. [DOI]
Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). John Wiley & Sons. [Amazon]
Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed). Springer. [Amazon]
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction: Does group discussion affect optimistic biases in time estimation? Organizational Behavior and Human Decision Processes, 97(1), 47–63. [DOI]
Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357–373. [DOI]
Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583. [DOI]
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–33. http://bit.ly/stl1990
Cleveland, W. S. (1993). Visualizing data. Hobart Press. [Amazon]
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289–303. [DOI]
Dagum, E. B., & Bianconcini, S. (2016). Seasonal adjustment methods and real time trend-cycle estimation. Springer. [Amazon]
Eroglu, C., & Croxton, K. L. (2010). Biases in judgmental adjustments of statistical forecasts: The role of individual differences. International Journal of Forecasting, 26(1), 116–133. [DOI]
Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27(1), 134–141. [DOI]
Fildes, R., & Goodwin, P. (2007a). Against your better judgment? How organizations can improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576. [DOI]
Fildes, R., & Goodwin, P. (2007b). Good and bad judgment in forecasting: Lessons from four companies. Foresight: The International Journal of Applied Forecasting, 8, 5–10.
Franses, P. H., & Legerstee, R. (2013). Do statistical forecasting models for SKU-level data benefit from including past expert knowledge? International Journal of Forecasting, 29(1), 80–87. [DOI]
Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28. [DOI]
Gardner, E. S. (2006). Exponential smoothing: The state of the art — Part II. International Journal of Forecasting, 22, 637–666. [DOI]
Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10), 1237–1246. [DOI]
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1(1), 125–151. [DOI]
Goodwin, P., & Wright, G. (2009). Decision analysis for management judgment (4th ed). John Wiley & Sons. [Amazon]
Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365–376. [DOI]
Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254. [DOI]
Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed). John Wiley & Sons. [Amazon]
Guerrero, V. M. (1993). Time-series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48. [DOI]
Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton. [Amazon]
Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis (2nd ed). Springer. [Amazon]
Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. John Wiley & Sons. [Amazon]
Harvey, N. (2001). Improving judgment in forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 59–80). Kluwer Academic Publishers. [DOI]
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427. [DOI]
Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted averages (ONR Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. Reprinted in the International Journal of Forecasting, 2004. [DOI]
Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. [DOI]
Hyndman, R. J., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1153. [DOI]
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22. [DOI]
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. [DOI]
Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Springer-Verlag. http://www.exponentialsmoothing.net
Hyndman, R. J., Wang, E., & Laptev, N. (2015). Large-scale unusual time series detection. Proceedings of the IEEE International Conference on Data Mining, 1616–1619. [DOI]
Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification and manifold learning. Springer. [Amazon]
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. Springer. [Amazon]
Kahn, K. B. (2006). New product forecasting: An applied approach. M.E. Sharp. [Amazon]
Kahneman, D., & Lovallo, D. (1993). Timid choices and bold forecasts: A cognitive perspective on risk taking. Management Science, 39(1), 17–31. [DOI]
Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345–358. [DOI]
Kourentzes, N., & Athanasopoulos, G. (2019). Cross-temporal coherent forecasts for Australian tourism. Annals of Tourism Research, 75, 393–409. [DOI]
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. [DOI]
Lahiri, S. N. (2003). Resampling methods for dependent data. Springer Science & Business Media. [Amazon]
Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review of progress over the last 25 years. International Journal of Forecasting, 22(3), 493–518. [DOI]
Lütkepohl, H. (2007). General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. Journal of Econometrics, 136(1), 234–319. [DOI]
Morwitz, V. G., Steckel, J. H., & Gupta, A. (2007). When do purchase intentions predict sales? International Journal of Forecasting, 23(3), 347–364. [DOI]
Önkal, D., Sayım, K. Z., & Gönül, M. S. (2013). Scenarios as channels of forecast advice. Technological Forecasting and Social Change, 80(4), 772–788. [DOI]
Ord, J. K., Fildes, R., & Kourentzes, N. (2017). Principles of business forecasting (2nd ed.). Wessex Press Publishing Co. [Amazon]
Panagiotelis, A., Athanasopoulos, G., Gamakumara, P., & Hyndman, R. J. (2021). Forecast reconciliation: A geometric view with new insights on bias correction. International Journal of Forecasting, 37(1), 343–359. [DOI]
Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., & Hyndman, R. J. (2022). Probabilistic forecast reconciliation: Properties, evaluation and score optimisation. European J Operational Research. To appear
Pankratz, A. E. (1991). Forecasting with dynamic regression models. John Wiley & Sons. [Amazon]
Pegels, C. C. (1969). Exponential forecasting: Some new variations. Management Science, 15(5), 311–315. [DOI]
Peña, D., Tiao, G. C., & Tsay, R. S. (Eds.). (2001). A course in time series analysis. John Wiley & Sons. [Amazon]
Pfaff, B. (2008). Analysis of integrated and cointegrated time series with R. Springer Science & Business Media. [Amazon]
Randall, D. M., & Wolff, J. A. (1994). The time interval in the intention-behaviour relationship: Meta-analysis. British Journal of Social Psychology, 33(4), 405–418. [DOI]
Rowe, G. (2007). A guide to Delphi. Foresight: The International Journal of Applied Forecasting, 8, 11–16.
Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375. [DOI]
Sanders, N., Goodwin, P., Önkal, D., Gönül, M. S., Harvey, N., Lee, A., & Kjolso, L. (2005). When and how should statistical forecasts be judgmentally adjusted? Foresight: The International Journal of Applied Forecasting, 1(1), 5–23.
Sheather, S. J. (2009). A modern approach to regression with R. Springer. [Amazon]
Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying Croston’s method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389–402. [DOI]
Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. [DOI]
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. [DOI]
Theodosiou, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178–1195. [DOI]
Unwin, A. (2015). Graphical data analysis with R. Chapman; Hall/CRC. [Amazon]
Wang, X., Smith, K. A., & Hyndman, R. J. (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335–364. [DOI]
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819. [DOI]
Winkler, R. L. (1972). A decision-theoretic approach to interval estimation. Journal of the American Statistical Association, 67(337), 187–191. [DOI]
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342. [DOI]
Young, P. C., Pedregal, D. J., & Tych, W. (1999). Dynamic harmonic regression. Journal of Forecasting, 18, 369–394. [DOI]